Polyprotic Acids and Bases

SWITCHED TO HARRIS TEXT

Thursday afternoon I am helping with understanding buffers and solving buffer problems. Email me if you would like to discuss this.

Third midterm exam on Monday, November 23

9-5 Review of Buffers

10-1 Diprotic Acids and Bases (omit the intermediate form)
10-2 Diprotic Buffers
10-3 Polyprotic Acids and Bases (omit the intermediate form)
10-4 Principle Species
10-5 Fractional Composition (omit equations)

Buffers - Common Ion Effect, HCI Addition

solution behaves like a buffer, originally before HCl addition pH was 3.18
EX 3. What is the pH of a solution which is 1.0 F in both HF and $1.0 \mathrm{NaF}\left(K_{\mathrm{a}}=\right.$ 6.6×10^{-4}) and 0.1 M in HCl

Buffers - Common Ion Effect, HCI Addition

solution behaves like a buffer, originally before HCl addition pH was 3.18
EX 3. What is the pH of a solution which is 1.0 F in both HF and $1.0 \mathrm{NaF}\left(K_{\mathrm{a}}=\right.$ 6.6×10^{-4}) and 0.1 M in HCl

$$
\begin{aligned}
& \mathrm{NaF}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \\
& \mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \\
& 1.0+0.1 \\
& \text { ~ } 0 \\
& \text { 1.0-0.1 } \\
& +x \\
& +x \\
& 1.1-x \\
& x \quad 0.9+x \\
& \mathrm{HCl}+\mathrm{NaF} \rightarrow \mathrm{NaCl}+\mathrm{HF} \\
& =>\mathrm{H}^{+}+\mathrm{F}^{-} \rightarrow \mathrm{HF} \\
& \text { (net ionic) } \\
& \text { C } \\
& \text { E } \\
& K_{\mathrm{a}}=\frac{\mathrm{x}(0.9+\mathrm{x})}{1.1-x} \sim 0.9 x / 1.1 \Rightarrow \mathrm{pH}=3.09 \\
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(6.66 \times 10^{-4}\right)+\log _{10} \frac{[0.9]}{[1.1]}=3.089
\end{aligned}
$$

Buffers - Common Ion Effect, NaOH Addition

solution behaves like a buffer, originally before NaOH addition pH was 3.18
EX 4. What is the pH of a solution which is 1.0 F in both HF and $1.0 \mathrm{NaF}\left(K_{\mathrm{a}}=\right.$ 6.6×10^{-4}) and 0.1 M in NaOH

Buffers - Common Ion Effect, NaOH Addition

solution behaves like a buffer, originally before NaOH addition pH was 3.18
EX 4. What is the pH of a solution which is 1.0 F in both HF and $1.0 \mathrm{NaF}\left(K_{\mathrm{a}}=\right.$ 6.6×10^{-4}) and 0.1 M in NaOH

$$
\begin{aligned}
& \mathrm{NaF}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \\
& \mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q) \xrightarrow{\mathrm{NaOH}+\mathrm{HF} \rightarrow \mathrm{NaF}+\mathrm{H}_{2} \mathrm{O}} \\
& \text { 1.0-0.1 ~0 } \\
& 1.0+0.1 \\
& -X \\
& +X \quad+X \\
& 0.9-X \\
& x \quad 1.1+x \\
& K_{\mathrm{a}}=\frac{\mathrm{x}(1.1+\mathrm{x})}{0.9-x} \sim 1.1 x / 0.9 \Rightarrow \mathrm{pH}=3.27 \\
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(6.66 \times 10^{-4}\right)+\log _{10} \frac{[1.1]}{[0.9]}=3.267
\end{aligned}
$$

Working with Buffer Solutions

*note ratio of base form to acid form
based on a weak acid (HA) and its conjugate base (A^{-})

$$
\begin{aligned}
& \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \ll \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
& \text { Henderson-Hasselbalch } K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \text { or } \mathrm{pH}=\mathrm{pH} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}+\log \frac{\left[\mathrm{A}^{-}\right]_{0}}{[\mathrm{HA}]_{0}}
\end{aligned}
$$

based on a weak base (B:) and its conjugate acid (BH^{+})
$\mathrm{B}:(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)<=>\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{BH}^{+}(\mathrm{aq})$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{B}:]}{\left[\mathrm{BH}^{+}\right]} \text {or } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\mathrm{B}:]}{\left[\mathrm{BH}^{+}\right]}
$$

Henderson-Hasselbalch

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\mathrm{B}]_{0}}{\left[\mathrm{BH}^{+}\right]_{0}} \swarrow^{*} \swarrow_{\text {this acid }}^{\mathrm{p} K_{\mathrm{a}} \text { applies to }}
$$

Buffers - Elementary

EX 5. $\left.K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}\right)$
a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{[0.300]}{[0.500]}=4.533$
b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base => very little reaction

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{100(0.200) / 600}{500(0.150) / 600}=4.879
$$

Buffers - Elementary

1. given molarities

EX 5. $\left.K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}\right)$
a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{[0.300]}{[0.500]}=4.533$
b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base => very little reaction

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{100(0.200) / 600}{500(0.150) / 600}=4.879
$$

calculate new molarities when mixing

Buffers - Elementary

EX 5. $\left.K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}\right)$
2. given volume/molarities of stock solutions
a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{[0.300]}{[0.500]}=4.533$
b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base $=>$ very little reaction

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{100(0.200) / 600}{500(0.150) / 600}=4.879
$$

calculate new molarities when mixing

Buffers - Elementary

2. given volume/molarities of stock solutions

EX 6. Determine the pH when 100 mL of $0.500 \mathrm{M} \mathrm{NH}_{3}$ is mixed with 200 mL of 0.300 M ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right), K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10} \frac{\left(1.01 \times 10^{-14}\right)}{\left(1.8 \times 10^{-5}\right)}+\log _{10} \frac{(0.100)(0.500)}{(0.200)(0.300)}=9.172
$$

ratio of molarities $=$ ratio of moles

Buffers - Preparation 1

3. given molarities of stock solutions, buffer concentration

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(\mathrm{K}_{\mathrm{a}}\right.$ $=6.3 \times 10^{-5}, \mathrm{p} K_{\mathrm{a}}=4.2006$) and $1.00 \mathrm{M} \mathrm{NaC} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?

$$
\begin{aligned}
& \begin{aligned}
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]} \Rightarrow>\text { ratio, } \mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=10^{\mathrm{pH}-\mathrm{pKa}} & =10^{4.50-4.2006}=1.992 \\
& =>[\mathrm{B}]=1.992[\mathrm{~A}]
\end{aligned} \\
& {[\mathrm{B}]+[\mathrm{A}]=0.40=1.992[\mathrm{~A}]+[\mathrm{A}]=>[\mathrm{A}]=0.1336 \mathrm{M}} \\
& =V_{A}(1.00) / 500=>66.8 \mathrm{~mL} \\
& {[B]=1.992[A]=1.992(0.1336)=0.2661 \mathrm{M}} \\
& =V_{B}(1.00) / 500 \text { => } 133 \mathrm{~mL}
\end{aligned}
$$

check ratio: $\mathrm{R}=0.133(1.00) / 0.0668(1.00)=1.991$

Buffers - Preparation 1

3. given molarities of stock solutions, buffer concentration

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(\mathrm{K}_{\mathrm{a}}\right.$ $=6.3 \times 10^{-5}, \mathrm{p} K_{\mathrm{a}}=4.2006$) and $1.00 \mathrm{M} \mathrm{NaC} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]} \Rightarrow>\text { ratio, } \mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=10^{\mathrm{pH}-\mathrm{p} K_{\mathrm{a}}}=10^{4.50-4.2006}=1.992 \\
& =>[\mathrm{B}]=1.992[\mathrm{~A}] \\
& {[\mathrm{B}]+[\mathrm{A}]=0.40}
\end{aligned} \quad \begin{aligned}
&=1.992[\mathrm{~A}]+[\mathrm{A}]=>[\mathrm{A}]=0.1336 \mathrm{M} \\
&=\mathrm{V}_{\mathrm{A}}(1.00) / 500=>66.8 \mathrm{~mL} \\
& {[\mathrm{~B}] }=1.992[\mathrm{~A}]=1.992(0.1336)=0.2661 \mathrm{M} \\
&=\mathrm{V}_{\mathrm{B}}(1.00) / 500 \Rightarrow>133 \mathrm{~mL}
\end{aligned}
$$

check ratio: $\mathrm{R}=0.133(1.00) / 0.0668(1.00)=1.991$

Buffers - Preparation 2

3. given volume/molarity of stock solution, molarity strong acid (or base)

EX 8. Prepare a solution buffered at $\mathrm{pH}=11.10$. This buffer is to be made from 225 mL of $0.331 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{\mathrm{a}}=2.3 \times 10^{-11}, \mathrm{p} K_{\mathrm{a}}=10.6382\right)$ to which 0.293 M HI is added. What volume of HI would you need?

$$
\begin{aligned}
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}=>\text { ratio, } \mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}}=10^{\mathrm{pH}-\mathrm{pKa}} & =10^{11.10-10.6382}=\mathbf{2 . 8 9 6} \\
& =>n_{\mathrm{B}}=2.896 n_{\mathrm{A}}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HI} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{I}^{-}$
$n_{\mathrm{B}}+n_{\mathrm{A}}=0.225(0.331)=0.074475=2.896 n_{\mathrm{A}}+n_{\mathrm{A}}=>n_{\mathrm{A}}=0.01911 \mathrm{~mol}$
ratio of molarities = ratio of moles constraint on molarities (buffer concentration) or constraint on total number of moles

$$
0.01911=\mathrm{V}(0.293)=>65.2 \mathrm{~mL}
$$

Polyprotic Acids and Bases

polyprotic acid - capable of donating more than one proton polyprotic base - capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{\mathrm{a}}=1.2 \times 10^{-2}$?

Polyprotic Acids and Bases

polyprotic acid - capable of donating more than one proton polyprotic base - capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{\mathrm{a}}=1.2 \times 10^{-2}$?
$\mathrm{H}_{2} \mathrm{SO}_{4}$ strong acid $=>$ [acid $]=[\mathrm{H}+]=[$ conjugate base $]$

Polyprotic Acids and Bases

polyprotic acid - capable of donating more than one proton polyprotic base - capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{\mathrm{a}}=1.2 \times 10^{-2}$?
$\mathrm{H}_{2} \mathrm{SO}_{4}$ strong acid $=>[$ acid $]=[\mathrm{H}+]=[$ conjugate base $]=>\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]_{0}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{HSO}_{4}^{-}\right]=1.00 \mathrm{M}$ $[\mathrm{OH}-]=K_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=1.01 \times \mathbf{1 0}^{-14}$

Polyprotic Acids and Bases

polyprotic acid - capable of donating more than one proton polyprotic base - capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{\mathrm{a}}=1.2 \times 10^{-2}$?
$\mathrm{H}_{2} \mathrm{SO}_{4}$ strong acid $=>[$ acid $]=[\mathrm{H}+]=[$ conjugate base $]=>\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{HSO}_{4}^{-}\right]=1.00 \mathrm{M}$ $[\mathrm{OH}-]=K_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=1.01 \times \mathbf{1 0}^{-14}$

$$
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

Polyprotic Acids and Bases

polyprotic acid - capable of donating more than one proton polyprotic base - capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{\mathrm{a}}=1.2 \times 10^{-2}$?
$\mathrm{H}_{2} \mathrm{SO}_{4}$ strong acid $=>[$ acid $]=[\mathrm{H}+]=[$ conjugate base $]=>\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{HSO}_{4}^{-}\right]=1.00 \mathrm{M}$ $[\mathrm{OH}-]=K_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=1.01 \times \mathbf{1 0}^{-14}$

Major Species

$\mathrm{HSO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(I)$	\Leftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
1.0	1.0	$\mathrm{SO}_{4}{ }^{2-}(a q)$
$-x$		$+x$

$\mathrm{H}_{2} \mathrm{O}$

Polyprotic Acids and Bases

polyprotic acid - capable of donating more than one proton polyprotic base - capable of accepting more than one proton

$$
\begin{aligned}
& \text { EX 11. What is the concentration of all species present in a } 1.00 \mathrm{M} \text { solution of sulfuric acid } \\
& \text { where } K_{\mathrm{a}}=1.2 \times 10^{-2} \text { ? } \\
& \mathrm{H}_{2} \mathrm{SO}_{4} \text { strong acid }=>[\text { acid }]=[\mathrm{H}+]=[\text { conjugate base }]=>\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\left[\mathrm{H}^{+}\right]=\left[\mathrm{HSO}_{4}^{-}\right]=1.00 \mathrm{M} \\
& \text { [OH-] }=K_{w} /\left[\mathrm{H}^{+}\right]=1.01 \times 10^{-14} \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]}{\left[\mathrm{HSO}_{4}{ }^{-}\right]}=\frac{1.0-x}{(1.00+x) x} 1.00-x \quad \Rightarrow \mathrm{x}=\left[\mathrm{SO}_{4}{ }^{2-}\right]=\mathbf{0 . 0 1 2} \mathbf{~ M} \\
& \begin{array}{l}
100(0.012)=1.2 \% \text { OK by } 5 \% \text { rule, not OK by } 1 \% \text { rule, quadratic }=>x=\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.0117 \mathrm{M}, \\
{\left[\mathrm{H}^{+}\right]_{\text {total }}=1.00+0.0117=1.01 \mathrm{M},[\mathrm{OH}-]=1.00 \times 10^{-14} \mathrm{M}}
\end{array}
\end{aligned}
$$

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?
$K_{\mathrm{a} 1}=7.11 \times 10^{-3}$
$\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)$ $\mathrm{p} K_{\text {al }}=2.1481$
$K_{\mathrm{a} 2}=6.34 \times 10^{-8}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HPO}_{4}^{2-}(a q)$
$\mathrm{p} K_{\mathrm{a} 2}=7.1979$
$K_{\mathrm{a} 3}=4.22 \times 10^{-13}$
$\mathrm{HPO}_{4}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{PO}_{4}^{3-}(a q)$
$\mathrm{p} K_{\mathrm{a} 3}=12.3746$

Polyprotic Acids and Bases

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?

Polyprotic Acids and Bases

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?
$K_{\mathrm{a} 1}=7.11 \times 10^{-3} \quad \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$

Polyprotic Acids and Bases

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?
$K_{\mathrm{a} 1}=7.11 \times 10^{-3} \quad \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$

Polyprotic Acids and Bases

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?
$K_{\mathrm{a} 1}=7.11 \times 10^{-3} \quad \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \ll=\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$
$K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=\frac{x^{2}}{5.00-x}$

Polyprotic Acids and Bases

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?
$K_{\mathrm{a} 1}=7.11 \times 10^{-3} \quad \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \ll=\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\underset{x}{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}-(\mathrm{aq})}$
$K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=\frac{x^{2}}{5.00-x} \quad \Rightarrow \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.01939 \mathrm{M}$

Polyprotic Acids and Bases

$$
\begin{aligned}
& \text { EX 2. What is the } \mathrm{pH} \text { and concentration of all species present in a } 5.00 \mathrm{M} \text { solution of } \\
& \text { phosphoric acid? } \\
& \begin{array}{c}
K_{\mathrm{a} 1}=7.11 \times 10^{-3} \quad \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\underset{x}{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})} \\
\mathrm{EQ} 5.00-x
\end{array} \\
& \text { 100(0.1939)/5.00 = 3.9\%, } \\
& \text { OK by } 5 \% \text {, not by } 1 \% \text { rule } \\
& \text { quadratic }=>x=0.1901 \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.190 \text {, }} \\
& {\left[\mathrm{OH}^{-}\right]=5.3 \times 10^{-13} \mathrm{M}} \\
& K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=\frac{x^{2}}{5.00-x} \Rightarrow x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.1939 \mathrm{M} \\
& {\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=5.00-0.19=4.81,\left[\mathrm{OH}^{-}\right]=5.2 \times 10^{-13} \mathrm{M} \quad \mathrm{pH}=0.71}
\end{aligned}
$$

Polyprotic Acids and Bases

$$
\begin{aligned}
& \text { EX 2. What is the } \mathrm{pH} \text { and concentration of all species present in a } 5.00 \mathrm{M} \text { solution of } \\
& \text { phosphoric acid? } \\
& \begin{array}{c}
K_{\mathrm{a} 1}=7.11 \times 10^{-3} \quad \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\underset{x}{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})} \\
\mathrm{EQ} 5.00-x
\end{array} \\
& 100(0.1939) / 5.00=3.9 \% \text {, } \\
& \text { OK by } 5 \% \text {, not by } 1 \% \text { rule } \\
& \text { quadratic } \Rightarrow>x=0.1901 \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.190 \text {, }} \\
& {\left[\mathrm{OH}^{-}\right]=5.3 \times 10^{-13} \mathrm{M}} \\
& K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=\frac{x^{2}}{5.00-x} \Rightarrow x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.1939 \mathrm{M} \\
& {\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=5.00-0.19=4.81,\left[\mathrm{OH}^{-}\right]=5.2 \times 10^{-13} \mathrm{M} \quad \mathrm{pH}=0.71} \\
& K_{\mathrm{a} 2}=6.34 \times 10^{-8} \quad \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq}) \\
& K_{\mathrm{a} 2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}
\end{aligned}
$$

Polyprotic Acids and Bases - Intermediate Form

Consider a diprotic acid
acid

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{-}(a q) \text { base } \\
& \mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{2-}(a q)
\end{aligned}
$$

Polyprotic Acids and Bases - Intermediate Form

Consider a diprotic acid

$$
\mathrm{H}_{2} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{-}(a q) \text { base }
$$

$$
\text { acid } \mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{2-}(a q)
$$

If $\mathrm{H}_{2} \mathrm{~A}$ is a weak acid its conjugate base, HA^{-}is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of HA^{-}such as NaHA?
Exact Treatment (H pp. 216-218) for NaHA
species: $\mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}^{-}, \mathrm{A}^{2-}, \mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{Na}^{+}=>$need 6 equations

Polyprotic Acids and Bases - Intermediate Form

Consider a diprotic acid

$$
\mathrm{H}_{2} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{-}(a q) \text { base }
$$

$$
\text { acid } \mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{2-}(a q)
$$

If $\mathrm{H}_{2} \mathrm{~A}$ is a weak acid its conjugate base, HA^{-}is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of HA^{-}such as NaHA?
Exact Treatment (H pp. 216-218) for NaHA
species: $\mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}^{-}, \mathrm{A}^{2-}, \mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{Na}^{+}=>$need 6 equations
charge balance: $\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
material balance: $\mathrm{M}_{\mathrm{NaHA}}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{-}\right]+\left[\mathrm{A}^{2-}\right]$

Polyprotic Acids and Bases - Intermediate Form

Consider a diprotic acid

$$
\mathrm{H}_{2} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{-}(a q) \text { base }
$$

$$
\text { acid } \mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{2-}(a q)
$$

If $\mathrm{H}_{2} \mathrm{~A}$ is a weak acid its conjugate base, HA^{-}is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of HA^{-}such as NaHA?
Exact Treatment (H pp. 216-218) for NaHA
species: $\mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}^{-}, \mathrm{A}^{2-}, \mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{Na}^{+}=>$need 6 equations
charge balance: $\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
material balance: $\mathrm{M}_{\mathrm{NaHA}}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{-}\right]+\left[\mathrm{A}^{2-}\right]$
equilibria: $\quad K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]} \quad K_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]} \quad K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Polyprotic Acids and Bases - Intermediate Form

Consider a diprotic acid

$$
\mathrm{H}_{2} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{-}(a q) \text { base }
$$

$$
\text { acid } \mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{2-}(a q)
$$

If $\mathrm{H}_{2} \mathrm{~A}$ is a weak acid its conjugate base, HA^{-}is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of HA^{-}such as NaHA?
Exact Treatment (H pp. 216-218) for NaHA
species: $\mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}^{-}, \mathrm{A}^{2-}, \mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{Na}^{+}=>$need 6 equations
charge balance: $\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
material balance: $\mathrm{M}_{\mathrm{NaHA}}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{-}\right]+\left[\mathrm{A}^{2-}\right]$
equilibria: $\quad K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]} \quad K_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]} \quad K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
One can show that

$$
\left[\mathrm{H}^{+}\right]^{2}=\frac{K_{\mathrm{al}} K_{\mathrm{a} 2}\left[\mathrm{HA}^{-}\right]+K_{\mathrm{a} 1} K_{\mathrm{w}}}{K_{\mathrm{a} 1}+\left[\mathrm{HA}^{-}\right]}
$$

