SWITCHED TO HARRIS TEXT

Thursday afternoon I am helping with understanding buffers and solving buffer problems. Email me if you would like to discuss this.

Third midterm exam on Monday, November 23

- 9-5 Review of Buffers
- **10-1** Diprotic Acids and Bases (omit the intermediate form)
- **10-2 Diprotic Buffers**
- 10-3 Polyprotic Acids and Bases (omit the intermediate form)
- **10-4 Principle Species**
- **10-5 Fractional Composition (omit equations)**

Friday quiz on buffers

Buffers – Common Ion Effect, HCI Addition

solution behaves like a buffer, originally before HCI addition pH was 3.18

EX 3. What is the pH of a solution which is 1.0 F in both HF and 1.0 NaF ($K_a = 6.6 \times 10^{-4}$) and 0.1 M in HCl

 $\begin{array}{rcl} \mathsf{NaF}(s) & \rightarrow & \mathsf{Na}^+(aq) \ + \ \mathsf{F}^-(aq) \\ \mathsf{HF}(aq) \ + \ \mathsf{H}_2\mathsf{O}(l) \ <=> \ \mathsf{H}_3\mathsf{O}^+(aq) \ + \ \mathsf{F}^-(aq) \\ \mathsf{I}.0 \ + \ \mathsf{O}.1 \ & \sim 0 \ & 1.0 \ - \ \mathsf{O}.1 \\ \mathsf{O} \ & -x \ & +x \ & +x \\ \mathsf{E} \ & 1.1 \ - x \ & x \ & 0.9 \ + x \end{array}$

$$K_{a} = \frac{x(0.9 + x)}{1.1 - x} \sim 0.9x / 1.1 => pH = 3.09$$

Buffers – Common Ion Effect, HCI Addition

solution behaves like a buffer, originally before HCI addition pH was 3.18

EX 3. What is the pH of a solution which is 1.0 F in both HF and 1.0 NaF ($K_a = 6.6 \times 10^{-4}$) and 0.1 M in HCl

 $\begin{array}{rcl} \mathsf{NaF}(s) & \rightarrow & \mathsf{Na^+}(aq) \ + \ \mathsf{F^-}(aq) \\ \mathsf{HF}(aq) \ + \ \mathsf{H}_2\mathsf{O}(\mathit{l}) \ <=> \ \mathsf{H}_3\mathsf{O^+}(aq) \ + \ \mathsf{F^-}(aq) \\ \mathsf{I}.0 \ + \ \mathsf{0.1} \\ \mathsf{O} \ & \sim 0 \\ \mathsf{O} \ & 1.0 \ - \ \mathsf{0.1} \\ \mathsf{O} \ & \mathsf{O} \ & \mathsf{I}.0 \ - \ \mathsf{0.1} \\ \mathsf{O} \ & \mathsf{O} \ & \mathsf{I}.1 \ - \ \mathsf{X} \\ \mathsf{E} \ & 1.1 \ - \ \mathsf{X} \ & \mathsf{X} \ & \mathsf{O}.9 \ + \ \mathsf{X} \end{array}$

$$K_{a} = \frac{x(0.9 + x)}{1.1 - x} \sim 0.9x / 1.1 => pH = 3.09$$

$$pH = pK_{a} + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(6.66 \times 10^{-4}) + \log_{10} \frac{[0.9]}{[1.1]} = 3.089$$
Henderson-Hasselbalch

Buffers – Common Ion Effect, NaOH Addition

solution behaves like a buffer, originally before NaOH addition pH was 3.18

EX 4. What is the pH of a solution which is 1.0 F in both HF and 1.0 NaF ($K_a = 6.6 \times 10^{-4}$) and 0.1 M in NaOH

$$K_{a} = \frac{x(1.1 + x)}{0.9 - x} \sim 1.1x/0.9 \implies pH = 3.27$$

Buffers – Common Ion Effect, NaOH Addition

solution behaves like a buffer, originally before NaOH addition pH was 3.18

EX 4. What is the pH of a solution which is 1.0 F in both HF and 1.0 NaF ($K_a = 6.6 \times 10^{-4}$) and 0.1 M in NaOH

 $\begin{array}{rcl} {\sf NaF}(s) & \to & {\sf Na^+}(aq) \ + \ {\sf F^-}(aq) \\ {\sf HF}(aq) \ + \ {\sf H}_2{\sf O}({\it I}) \ <=> \ {\sf H}_3{\sf O^+}(aq) \ + \ {\sf F^-}(aq) \\ {\sf HF}(aq) \ + \ {\sf HF} \ \rightarrow \ {\sf NaF} \ + \ {\sf H}_2{\sf O} \\ => \ {\sf OH^-} \ + \ {\sf HF} \ \rightarrow \ {\sf F^-} \ + \ {\sf H}_2{\sf O} \\ => \ {\sf OH^-} \ + \ {\sf HF} \ \rightarrow \ {\sf F^-} \ + \ {\sf H}_2{\sf O} \\ {\sf (net\ ionic)} \\ {\sf C} \\ {\sf C} \\ {\sf C} \\ {\sf C} \\ {\sf I} \ {\sf O} \ - \ {\sf X} \\ {\sf E} \end{array} \qquad \begin{array}{c} {\sf O} \ {\sf O} \ - \ {\sf X} \\ {\sf O} \ {\sf O} \ {\sf I} \ {\sf O} \ + \ {\sf X} \\ {\sf X} \\ {\sf I} \ {\sf I} \ {\sf I} \ {\sf X} \end{array} \qquad \begin{array}{c} {\sf NaOH} \ + \ {\sf HF} \ \rightarrow \ {\sf NaF} \ + \ {\sf H}_2{\sf O} \\ {\sf OH^-} \ + \ {\sf HF} \ \rightarrow \ {\sf F^-} \ + \ {\sf H}_2{\sf O} \\ {\sf (net\ ionic)} \\ {\sf (net\ ionic)} \end{array}$

$$K_{a} = \frac{x(1.1 + x)}{0.9 - x} \sim 1.1x/0.9 = pH = 3.27$$

$$pH = pK_{a} + \log_{10}\frac{[base]}{[acid]} = -\log_{10}(6.66 \times 10^{-4}) + \log_{10}\frac{[1.1]}{[0.9]} = 3.267$$
Henderson-Hasselbalch

Working with Buffer Solutions

*note ratio of base form to acid form

based on a weak acid (HA) and its conjugate base (A⁻) Henderson-Hasselbalch $F_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \text{ or } pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$ $K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \text{ or } pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$ based on a weak base (B:) and its conjugate acid (BH⁺) $B:(aq) + H_2O(l) \iff OH^-(aq) + BH^+(aq)$ $K_{a} = \frac{[H_{3}O^{+}][B:]}{[BH^{+}]}$ or pH = p K_{a} + log $\frac{[B:]}{[BH^{+}]}$ Henderson-Hasselbalch pH = pK_a + log $\frac{[B]_o}{[BH^+]_o}$ * \swarrow^{pK_a} applies to this acid

EX 5. K_a (CH₃COOH) = 1.76 × 10⁻⁵)

a) Determine the pH of a solution which is simultaneously 0.500 M CH_3COOH and 0.300 M sodium acetate

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5}) + \log_{10} \frac{[0.300]}{[0.500]} = 4.533$$

b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base => very little reaction

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5}) + \log_{10} \frac{100(0.200)/600}{500(0.150)/600} = 4.879$$

calculate new molarities when mixing

1. given molarities

EX 5. K_a (CH₃COOH) = 1.76 × 10⁻⁵)

a) Determine the pH of a solution which is simultaneously 0.500 M CH₃COOH and 0.300 M sodium acetate

pH = p
$$K_a$$
 + log₁₀ $\frac{[base]}{[acid]}$ = - log₁₀(1.76 × 10⁻⁵) + log₁₀ $\frac{[0.300]}{[0.500]}$ = **4.533**

b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base => very little reaction

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5}) + \log_{10} \frac{100(0.200)/600}{500(0.150)/600} = 4.879$$

calculate new molarities when mixing

EX 5. K_a (CH₃COOH) = 1.76 × 10⁻⁵)

2. given volume/molarities of stock solutions

a) Determine the pH of a solution which is simultaneously 0.500 M CH_3COOH and 0.300 M sodium acetate

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5}) + \log_{10} \frac{[0.300]}{[0.500]} = 4.533$$

b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base => very little reaction

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5}) + \log_{10} \frac{100(0.200)/600}{500(0.150)/600} = 4.879$$

calculate new molarities when mixing

2. given volume/molarities of stock solutions

EX 6. Determine the pH when 100 mL of 0.500 M NH₃ is mixed with 200 mL of 0.300 M ammonium chloride (NH₄Cl), K_b (NH₃) = 1.8 × 10⁻⁵

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10} \frac{(1.01 \times 10^{-14})}{(1.8 \times 10^{-5})} + \log_{10} \frac{(0.100)(0.500)}{(0.200)(0.300)} = 9.172$$

weak acid + weak base => very little reaction

ratio of molarities = ratio of moles

Buffers – Preparation 1

3. given molarities of stock solutions, buffer concentration

EX 7. Prepare 500 mL of a solution buffered at pH = 4.50 with a **buffer concentration of 0.40 M**. This buffer is to be made from 1.00 M C₆H₅COOH (K_a = 6.3 × 10⁻⁵, $pK_a = 4.2006$) and 1.00 M NaC₆H₅COO. What volume of acid and its conjugate base would you need?

 $pH = pK_{a} + \log_{10} \frac{[B]}{[A]} => ratio, R = \begin{bmatrix} B \\ A \end{bmatrix} = 10^{pH-pK_{a}} = 10^{4.50-4.2006} = 1.992$ => [B] = 1.992 [A][B] + [A] = 0.40 = 1.992 [A] + [A] => [A] = 0.1336 M $= V_{A} (1.00) / 500 => 66.8 mL$ [B] = 1.992 [A] = 1.992 (0.1336) = 0.2661 M $= V_{B} (1.00) / 500 => 133 mL$

check ratio: R = 0.133(1.00) / 0.0668(1.00) = 1.991

Buffers – Preparation 1

3. given molarities of stock solutions, buffer concentration

EX 7. Prepare 500 mL of a solution buffered at pH = 4.50 with a **buffer concentration of 0.40 M**. This buffer is to be made from 1.00 M C₆H₅COOH (K_a = 6.3 × 10⁻⁵, $pK_a = 4.2006$) and 1.00 M NaC₆H₅COO. What volume of acid and its conjugate base would you need?

 $pH = pK_{a} + \log_{10} \frac{[B]}{[A]} \Rightarrow ratio, R = \frac{[B]}{[A]} = 10^{pH-pK_{a}} = 10^{4.50-4.2006} = 1.992$ = > [B] = 1.992 [A] $= V_{A} (1.00) / 500 \Rightarrow 66.8 mL$ [B] = 1.992 [A] = 1.992 (0.1336) = 0.2661 M $= V_{B} (1.00) / 500 \Rightarrow 133 mL$

check ratio: R = 0.133(1.00) / 0.0668(1.00) = 1.991

Buffers – Preparation 2

3. given volume/molarity of stock solution, molarity strong acid (or base)

EX 8. Prepare a solution buffered at pH = 11.10. This buffer is to be made from 225 mL of 0.331 M CH_3NH_2 ($K_a = 2.3 \times 10^{-11}$, $pK_a = 10.6382$) to which 0.293 M HI is added. What volume of HI would you need?

$$pH = pK_{a} + \log_{10} \frac{[B]}{[A]} = ratio, R = \frac{[B]}{[A]} = \frac{n_{B}}{n_{A}} = 10^{pH - pK_{a}} = 10^{11.10 - 10.6382} = 2.896$$
$$= n_{B} = 2.896 n_{A}$$
$$CH_{3}NH_{2} + HI \rightarrow CH_{3}NH_{3}^{+} + I^{-}$$

 $n_{\rm B} + n_{\rm A} = 0.225(0.331) = 0.074475 = 2.896 n_{\rm A} + n_{\rm A} => n_{\rm A} = 0.01911 \text{ mol}$

ratio of molarities = ratio of moles constraint on molarities (buffer concentration) or constraint on total number of moles

0.01911 = V (0.293) => 65.2 mL

polyprotic acid – capable of donating more than one proton polyprotic base – capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_a = 1.2 \times 10^{-2}$?

polyprotic acid – capable of donating more than one proton polyprotic base – capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_a = 1.2 \times 10^{-2}$?

H₂SO₄ strong acid => [acid] = [H+] = [conjugate base]

polyprotic acid – capable of donating more than one proton polyprotic base – capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{a} = 1.2 \times 10^{-2}$? H_2SO_4 strong acid => [acid] = [H+] = [conjugate base] => [H_2SO_4]_o = [H+] = [HSO_4^-] = 1.00 M $[OH-] = K_w / [H^+] = 1.01 \times 10^{-14}$ Major Species H^+ HSO₄ H₂O

polyprotic acid – capable of donating more than one proton polyprotic base – capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{a} = 1.2 \times 10^{-2}$? H_2SO_4 strong acid => [acid] = [H+] = [conjugate base] => [H_2SO_4] = [H+] = [HSO_4^-] = 1.00 M $[OH-] = K_w / [H^+] = 1.01 \times 10^{-14}$ Major Species $HSO_4^{-}(aq) + H_2O(l) <=> H_3O^{+}(aq) + SO_4^{2-}(aq)$ H^+ HSO₄ H₂O

polyprotic acid – capable of donating more than one proton polyprotic base – capable of accepting more than one proton

EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{a} = 1.2 \times 10^{-2}$? H_2SO_4 strong acid => [acid] = [H+] = [conjugate base] => [H_2SO_4] = [H+] = [HSO_4^-] = 1.00 M $[OH-] = K_w / [H^+] = 1.01 \times 10^{-14}$ Major Species $HSO_4^{-}(aq) + H_2O(l) \iff H_3O^{+}(aq) + SO_4^{2-}(aq)$ H^+ 1.0 1.0 ~0 С - X + X + X HSO_4 E 1.0 - x1.0 + x x H_2O

polyprotic acid – capable of donating more than one proton polyprotic base – capable of accepting more than one proton

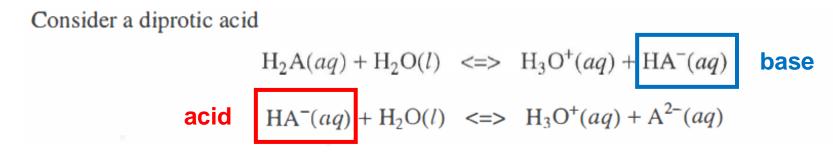
EX 11. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{a} = 1.2 \times 10^{-2}$? H_2SO_4 strong acid => [acid] = [H+] = [conjugate base] => [H_2SO_4] = [H+] = [HSO_4^-] = 1.00 M $[OH-] = K_w / [H^+] = 1.01 \times 10^{-14}$ Major Species $HSO_4^{-}(aq) + H_2O(l) \iff H_3O^{+}(aq) + SO_4^{2-}(aq)$ H^+ 1.0 1.0 ~0 С - X + *X* + *X* HSO_4 Ε 1.0 + *x x* 1.0 - x $K_{a} = \frac{[H_{3}O^{+}][SO_{4}^{2-}]}{[HSO_{4}^{-}]} = \frac{(1.00 + x) x}{1.00 - x} \implies x = [SO_{4}^{2-}] = 0.012 \text{ M}$ H₂O 100(0.012) = 1.2% OK by 5% rule, not OK by 1% rule, quadratic => x = [SO₄²⁻] = 0.0117 M, $[H^+]_{total} = 1.00 + 0.0117 = 1.01 \text{ M}, [OH_-] = 1.00 \times 10^{-14} \text{ M}$

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid? $K_{a1} = 7.11 \times 10^{-3}$ $H_3PO_4(aq) + H_2O(l) \le H_3O^+(aq) + H_2PO_4^-(aq)$ $pK_{a1} = 2.1481$ $H_2PO_4^-(aq) + H_2O(l) \le H_3O^+(aq) + HPO_4^{2-}(aq)$ $K_{a2} = 6.34 \times 10^{-8}$ $pK_{a2} = 7.1979$ $HPO_4^{2-}(aq) + H_2O(l) \le H_3O^+(aq) + PO_4^{3-}(aq)$ $K_{a3} = 4.22 \times 10^{-13}$ $pK_{a3} = 12.3746$

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?

 $K_{a1} = 7.11 \times 10^{-3}$ $H_3PO_4(aq) + H_2O(l) \le H_3O^+(aq) + H_2PO_4^-(aq)$

$$K_{a1} = 7.11 \times 10^{-3}$$
 $H_3PO_4(aq) + H_2O(l) \le H_3O^+(aq) + H_2PO_4^-(aq)$
EQ 5.00 - x x x


$$K_{a1} = 7.11 \times 10^{-3} \qquad H_{3}PO_{4}(aq) + H_{2}O(l) \le H_{3}O^{+}(aq) + H_{2}PO_{4}^{-}(aq)$$

EQ 5.00 - x x x
$$K_{a1} = \frac{[H_{3}O^{+}][H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]} = \frac{x^{2}}{5.00 - x}$$

$$K_{a1} = 7.11 \times 10^{-3} \quad H_{3}PO_{4}(aq) + H_{2}O(l) \le H_{3}O^{+}(aq) + H_{2}PO_{4}^{-}(aq)$$

EQ 5.00 - x x x

$$K_{a1} = \frac{[H_{3}O^{+}][H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]} = \frac{x^{2}}{5.00 - x} \implies x = [H_{3}O^{+}] = [H_{2}PO_{4}^{-}] = 0.01939 \text{ M}$$

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of
phosphoric acid?100(0.1939)/5.00 = 3.9%,
0K by 5%, not by 1% rule
quadratic => x = 0.1901
 $[H_3O^+][H_2PO_4^-] = 0.190,$
 $[OH^-] = 5.3 \times 10^{-13} M$ $\mathcal{K}_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_3PO_4]} = \frac{x^2}{5.00 - x}$ => $x = [H_3O^+] = [H_2PO_4^-] = 0.1939 M$ $\mathcal{K}_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_3PO_4]} = 4.81, [OH^-] = 5.2 \times 10^{-13} M$ pH = 0.71

 $\mathcal{K}_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_3PO_4]} = \frac{x^2}{5.00 - x} \implies x = [H_3O^+] = [H_2PO_4^-] = 0.1939 \text{ M}$ $[H_3PO_4] = 5.00 - 0.19 = 4.81, [OH^-] = 5.2 \times 10^{-13} \text{ M} \qquad pH = 0.71$ $\mathcal{K}_{a2} = 6.34 \times 10^{-8} \qquad H_2PO_4^-(aq) + H_2O(l) <=> H_3O^+(aq) + HPO_4^{2-}(aq)$ $\mathcal{K}_{a2} = \frac{[H_3O^+][HPO_4^{2-}]}{[H_2PO_4^-]}$

Consider a diprotic acid

$$H_{2}A(aq) + H_{2}O(l) \iff H_{3}O^{+}(aq) + HA^{-}(aq) \text{ base}$$

acid
$$HA^{-}(aq) + H_{2}O(l) \iff H_{3}O^{+}(aq) + A^{2-}(aq)$$

If H_2A is a weak acid its conjugate base, HA^- is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of HA^- such as NaHA? Exact Treatment (H pp. 216 - 218) for NaHA

species: H_2A , HA^- , A^{2-} , H^+ , OH^- , $Na^+ =>$ need 6 equations

Consider a diprotic acid

H₂A(aq) + H₂O(l)
$$\iff$$
 H₃O⁺(aq) + HA⁻(aq) base
HA⁻(aq) + H₂O(l) \iff H₃O⁺(aq) + A²⁻(aq)

If H₂A is a weak acid its conjugate base, HA⁻ is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of HA⁻ such as NaHA? Exact Treatment (H pp. 216 - 218) for NaHA species: H₂A, HA⁻, A²⁻, H⁺, OH⁻, Na⁺ => need 6 equations charge balance: [H⁺] + [Na⁺] = [HA⁻] + 2[A²⁻] + [OH⁻]

material balance: $M_{NaHA} = [Na^+] = [H_2A] + [HA^-] + [A^{2-}]$

Consider a diprotic acid

H₂A(aq) + H₂O(l)
$$\iff$$
 H₃O⁺(aq) + HA⁻(aq) base
HA⁻(aq) + H₂O(l) \iff H₃O⁺(aq) + A²⁻(aq)

If H_2A is a weak acid its conjugate base, HA^- is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of HA^- such as NaHA?

Exact Treatment (H pp. 216 - 218) for NaHA

species: H_2A , HA^- , A^{2-} , H^+ , OH^- , $Na^+ =>$ need 6 equations charge balance: $[H^+] + [Na^+] = [HA^-] + 2[A^{2-}] + [OH^-]$

material balance: $M_{NaHA} = [Na^+] = [H_2A] + [HA^-] + [A^{2-}]$

equilibria:
$$K_{al} = \frac{[H^+][HA^-]}{[H_2A]}$$
 $K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]}$ $K_w = [H^+][OH^-]$

Consider a diprotic acid

H₂A(aq) + H₂O(l)
$$\iff$$
 H₃O⁺(aq) + HA⁻(aq) base
HA⁻(aq) + H₂O(l) \iff H₃O⁺(aq) + A²⁻(aq)

If H_2A is a weak acid its conjugate base, HA^- is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of HA^- such as NaHA?

Exact Treatment (H pp. 216 - 218) for NaHA

species: H_2A , HA^- , A^{2-} , H^+ , OH^- , $Na^+ =>$ need 6 equations charge balance: $[H^+] + [Na^+] = [HA^-] + 2[A^{2-}] + [OH^-]$ material balance: $M_{NaHA} = [Na^+] = [H_2A] + [HA^-] + [A^{2-}]$

material balance: $M_{NaHA} = [Na] = [H_2A] + [HA] + [A]$

equilibria:
$$K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$$
 $K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]}$ $K_w = [H^+][OH^-]$

One can show that

$$[H^+]^2 = \frac{K_{a1}K_{a2}[HA^-] + K_{a1}K_w}{K_{a1} + [HA^-]}$$

exact relation